A 1600 Year Old Cup and Today’s Modern Nano Technology

roman-nanotechnology-holograms

The Lycurgus Cup is a 1,600-year-old jade green Roman chalice that changes color depending on the direction the light falls on it. It’s baffled scientists ever since the glass chalice came into possession of the British Museum in the 1950s. They couldn’t work out why the cup appeared jade green when lit from the front but blood red when lit from behind.

Later research confirmed the effect was caused by interference produced by the interaction of light with metallic nanoparticles. The same technology as was used to produce the unique features of the Lycurgus cup are being used to create holograms made of tiny particles of silver that could double the amount of information that can be stored in digital optical devices, such as sensors, displays and medical imaging devices.

According to a new study published in the Proceedings of the National Academy of Sciences of the United States of America, the interference produced by the interaction of light with nanoparticles allows holograms to go beyond the normal limits of diffraction, or the way in which waves spread or bend when they encounter an opening or obstacle.

When metallic particles have dimensions on the nanoscale, they display iridescent colors. The first known example of this phenomenon is the Lycurgus cup, a 4th century chalice made of glass impregnated with particles of silver and gold, ground down until they were as small as 50 nanometers in diameter, less than one-thousandth the size of a grain of table salt. This produced the optical phenomenon, known as dichroism, which occurs when the color of the cup changes from green to red according to the position of the light source.

Scientists say the Roman artisans created the dichromic effect in the magnificent Lycurgus chalice by accident, however, others have argued that their work was so precise that it is ridiculous to assert that the outcome was accidental.  In fact, the exact mixture of the previous metals suggests that the Romans may have perfected the use of nanoparticles, “an amazing feat,” according to archaeologist Ian Freestone of University College London.

Only in the last 20 years have scientists begun to understand the phenomenon observed in the Lycurgus Cup, but until now, they have not been able to utilize its effects in currently-available technology. To apply this phenomenon in modern optics, an interdisciplinary team of researchers have created nanoscale metallic nanoparticle arrays that mimic the color effects of the Lycurgus cup, to form multi-color holograms. This breakthrough could lead to the shrinkage of standard bulky optical devices.

“This technology will lead to a new range of applications in the area of photonics, as conventional optical components simply cannot achieve this kind of functionality,” said Yunuen Montelongo, a PhD student from the Department of Engineering, who led the research. “The potential of this technology will be realized when they are mass produced and integrated into the next generation of ultra-thin consumer electronics.”

Using a single thin layer of silver, Montelongo and his colleagues patterned colorful holograms containing 16 million nanoparticles per square millimeter. Each nanoparticle, approximately 1000 times smaller than the width of a human hair, scatters light into different colors depending on its particular size and shape. The scattered light from each of the nanoparticles interacts and combines with all of the others to produce an image.

The device can display different images when illuminated with a different color light, a property not seen before in a device of this type. Furthermore, when multiple light sources are shone simultaneously, a multi-color image is projected.

“This hologram may find a wide range of applications in the area of displays, optical data storage, and sensors,” said PhD student Calum Williams, a co-author of the paper. “However, scalable approaches are needed to fulfill the potential of this technology.”

Doesn’t it seem strange thoug that scientists now turn to the works of our so-called ‘primitive’ ancestors for help in developing new, cutting edge, technologies?

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s